perm filename MINUS[EKL,SYS]4 blob
sn#826205 filedate 1986-10-16 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00003 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 more arithmetic
C00005 00003 minus
C00017 ENDMK
C⊗;
;more arithmetic
(wipe-out)
(get-proofs normal prf ekl sys)
(get-proofs natnum prf ekl sys)
(label simpinfo zero_not_successor) ;add these to simpinfo for now
(label simpinfo zeroleast1)
(label simpinfo successorless)
(label simpinfo successoreq)
(label simpinfo zeroleast3)
(proof lesseq)
;1
(axiom |∀n.¬n=n'|)
(label simpinfo)
;2
(decl lesseq (type: |ground⊗ground→truthval|)
(syntype: constant) (infixname: |≤|)(bindingpower: 920))
;3
(define lesseq |∀m n.(m ≤ n)=(m=n∨m<n)|)
(label lesseqdef)
;4
(axiom |∀n m.n'≤m'≡n≤m|)
(label successorlesseq) (label successorfacts) (label simpinfo)
;5
(axiom |∀n m k.n≤m∧m≤k⊃n≤k|)
(label trans_lesseq)
;6
(axiom |∀n m k.n<m∧m≤k⊃n<k|)
(label less_lesseq_fact1)
;7
(axiom |∀n.0≤n|)
(label zeroleast)
;8
(axiom |∀n.1≤n'|)
(label oneleastsucc)
;9
(axiom |∀n m.n'<m⊃¬m=0|)
(label zero_non_less_successor)(label simpinfo)
;10
(axiom |∀m n.m'<n⊃m<n|)
(label succ_less_less)
;11
(axiom |∀m n.m'≤n⊃m≤n|)
(label succ_lesseq_lesseq)
;12
(axiom |∀n m.n≤m⊃n≤m'|)
(label lesseq_lesseq_succ)
;13
(axiom |∀n m.m<n'≡m≤n|)
(label less_succ_lesseq)
;14
(axiom |∀m n.m<n=m'≤n|)
(label less_lesseqsucc)
;15
(axiom |∀n m.n≤m∧m≤n⊃n=m|)
(label leq_leq_eq)
;16
(axiom |∀n m.m<n∨m=n∨n<m|)
(label trichotomy)
;minus
(proof minus)
;1.
(decl minus (type: |ground⊗ground→ground|)(infixname: |-|)
(syntype: constant) (bindingpower: 940))
;2.
(define minus |∀m n.m-0=m∧m-(n')=pred(m-n)| inductive_definition)
(label minusdef)
;3.
(axiom |∀n k.natnum(k-n)|)
(label simpinfo)(label minus_sort)
;4.
(axiom |∀n m.n<m⊃0<m-n|)
(label minusfact3)
;5.
(axiom |∀n.0<n⊃pred(n)'=n|)
(label minusfact5)
;6.
(axiom |∀n m.n≤m⊃m'-n=(m-n)'|)
(label successor_minus)
;7.
(axiom |∀n m.n<m⊃m-n=(m-(n'))'|)
(label minusfact10)
;8.
(axiom |∀n m.m<n⊃n-(m')<n|)
(label minusfact11)
;9.
(axiom |∀n.n-n=0|)
(label simpinfo)(label n_less_n)
;10.
(axiom |∀n.0<n⊃n-(pred n)=1|)
(label minus1)
;11.
(axiom |∀n m.m≤n⊃m-n=0|)
(label total_subtraction)
;12.
(axiom |∀n m k.k<n∧m<n-k≡m+k<n|)
(label inequality_law)
;the main facts of arithmetic needed for the pigeon-hole
;13.
(axiom |∀n k m.n≤m∧1≤k⊃n'≤m+k|)
(label add_lesseq)
;14.
(axiom |∀k n m.1≤k∧m+k=n'∧n≤m⊃1=k∧n=m|)
(label add_one)
(save-proofs minus)